
A Case Study

What’s in a Node.js Bug

Anna Henningsen
Staff Engineer @ MongoDB

WELCOME

Hi all, I’m Anna!
● she/her

● Currently Staff Engineer @ MongoDB working on Developer Tools
● Former Node.js core contributor & TSC member
● Unreasonably passionate about Character Encodings

@addaleax.bsky.social https://addaleax.net/cityjs-athens24.pdf

Before we dive in:
A quick refresh

What’s a Character Encoding?

What’s a Character Encoding?

What’s a Character Encoding?

What’s a Character Encoding?

JS uses UTF-16, right…?

JS uses UTF-16, right…?
Actually, JS engines are smart:
$ grep 'V8_OBJECT class' deps/v8/src/objects/string.h

V8_OBJECT class String : public Name {

V8_OBJECT class InternalizedString : public String{

V8_OBJECT class SeqOneByteString : public SeqString {

V8_OBJECT class SeqTwoByteString : public SeqString {

V8_OBJECT class ConsString : public String {

V8_OBJECT class ThinString : public String {

V8_OBJECT class SlicedString : public String {

V8_OBJECT class UncachedExternalString : public String {

V8_OBJECT class ExternalString : public UncachedExternalString {

V8_OBJECT class ExternalOneByteString : public ExternalString {

V8_OBJECT class ExternalTwoByteString : public ExternalString {

JS uses UTF-16, right…?

'a' + 'bcd\u2615f'.repeat(3).substring(2)

JS uses UTF-16, right…?
$ node --allow-natives-syntax -e "%DebugPrint(

'a' + 'bcd\u2615f'.repeat(3).substring(2))"

DebugPrint: 0x276f94d8359: [String]: uc"ad\u2615fbcd\u2615fbcd\u2615f"

0x3b2096501c31: [Map] in ReadOnlySpace

 - type: CONS_STRING_TYPE

What happened
in Node.js 22.7.0?

Ouch!

Wait … what?!

Step 1: Minimal reproduction
$ cat test.js

for (let i = 0; ; i++) {

 const str = Buffer.from('café', 'utf8').toString('utf8');

 if (str !== 'café') {

console.error('Bad result after ' + i + ' iterations: ' + str);

break;

 }

}

$ node test.js

Bad result after 10279 iterations: caf�

$ node test.js

Bad result after 9583 iterations: caf�

Step 2: git bisect to the rescue!

Step 3: 3x fast_write_string…?

Step 4: Let’s play Find the Bug

Why did it
happen?

Node.js contributors care about
performance
● Deno, Bun & friends are claiming significant performance benefits over Node.js
● Optimizing Node.js corresponds to real $$$ savings for users
● Optimizing Node.js is a fairly viable path to finding ways to contribute to Node.js

The ʻFast API’ in V8
● Historically, C++ ⟷ JS boundary crossings have been some of the most expensive parts

of JS apps
● V8’s Fast API provides a way to directly call C++ code from JS
● The Fast API requires some pre-conditions to be met, e.g. “nice data layout”, “never

triggers GC”, “no calls back into JS”, etc.

The ʻFast API’ in V8
● Historically, C++ ⟷ JS boundary crossings have been some of the most expensive parts

of JS apps
● V8’s Fast API provides a way to directly call C++ code from JS
● The Fast API requires some pre-conditions to be met, e.g. “nice data layout”, “never

triggers GC”, “no calls back into JS”, etc.

● Write a C++ function twice, once “slow”, once “fast”
● Fast calls only kick in after (potentially asynchronous) optimization!

It all comes together
$ cat test.js

for (let i = 0; ; i++) {

 const str = Buffer.from('café', 'utf8').toString('utf8');

 if (str !== 'café') {

console.error('Bad result after ' + i + ' iterations: ' + str);

break;

 }

}

$ node test.js

Bad result after 10279 iterations: caf�

$ node test.js

Bad result after 9583 iterations: caf�

JS uses UTF-16, right…?
Actually, JS engines are smart:
$ grep 'V8_OBJECT class' deps/v8/src/objects/string.h

V8_OBJECT class String : public Name {

V8_OBJECT class InternalizedString : public String{

V8_OBJECT class SeqOneByteString : public SeqString { // ISO-8859-1

V8_OBJECT class SeqTwoByteString : public SeqString { // UTF-16

V8_OBJECT class ConsString : public String {

V8_OBJECT class ThinString : public String {

V8_OBJECT class SlicedString : public String {

V8_OBJECT class UncachedExternalString : public String {

V8_OBJECT class ExternalString : public UncachedExternalString {

V8_OBJECT class ExternalOneByteString : public ExternalString {

V8_OBJECT class ExternalTwoByteString : public ExternalString {

Found the bug!

Found the bug!

Comes in as
ISO-8859-1

Should write UTF-8 to
dst_data

Don’t we have
tests?

Don’t we have tests?
● Coverage indicates that the new code paths were taken – just not in the relevant tests
● The PR also added new benchmarks which exercised these code paths but did not check

results

Don’t we have tests?
● Coverage indicates that the new code paths were taken – just not in the relevant tests
● The PR also added new benchmarks which exercised these code paths but did not check

results
● Node.js releases go through Canary In The Goldmine (“CITGM”) ecosystem testing – all

failures were triaged and none were related

What can we
learn from it?

To wrap it up…
● Naming matters – people who don’t know your code will work with it
● Don’t just make sure code is covered, test each change you’re making

To wrap it up…
● Naming matters – people who don’t know your code will work with it
● Don’t just make sure code is covered, test each change you’re making
● Character encodings can be a leaky abstraction
● This wouldn’t have happened if clean breaks in character encodings weren’t so unpopular

To wrap it up…
● Naming matters – people who don’t know your code will work with it
● Don’t just make sure code is covered, test each change you’re making
● Character encodings can be a leaky abstraction
● This wouldn’t have happened if clean breaks in character encodings weren’t so unpopular
● V8 is smart! It will store strings in many different ways and even optimize your code while

it runs
● V8 is dumb! There is a clear gap for testability of the fast API

To wrap it up…
● Naming matters – people who don’t know your code will work with it
● Don’t just make sure code is covered, test each change you’re making
● Character encodings can be a leaky abstraction
● This wouldn’t have happened if clean breaks in character encodings weren’t so unpopular
● V8 is smart! It will store strings in many different ways and even optimize your code while

it runs
● V8 is dumb! There is a clear gap for testability of the fast API
● Node.js & V8 engineers constantly work on performance
● Be careful with using latest Node.js versions in production

Thank you for
your time.

What’s a Character Encoding?

data data

.setEncoding(‘utf8’)

